skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Seaton, Lucas_M"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract We present the results of an investigation of a highly variable Civbroad absorption line (BAL) feature in spectra of the quasar SBS 1408+544 (z= 2.337) that shows a significant shift in velocity over time. This source was observed as a part of the Sloan Digital Sky Survey (SDSS) Reverberation Mapping project and the SDSS-V Black Hole Mapper Reverberation Mapping project, and has been included in two previous studies, both of which identified significant variability in a high-velocity CivBAL on timescales of just a few days in the quasar rest frame. Using ∼130 spectra acquired over 8 yr of spectroscopic monitoring with SDSS, we have determined that this BAL is not only varying in strength, but is also systematically shifting to higher velocities. Using cross-correlation methods, we measure the velocity shifts (and corresponding acceleration) of the BAL over a wide range of timescales, measuring an overall velocity shift of Δ v = 683 84 + 89 km s−1over the 8 yr monitoring period. This corresponds to an average rest-frame acceleration ofa= 1.04 0.13 + 0.14 cm s−2, though the magnitude of the acceleration on shorter timescales is not constant throughout. We place our measurements in the context of BAL-acceleration models and examine various possible causes of the observed velocity shift. 
    more » « less